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data and evaluate the six methods. Two methods were found to be
consistently poor. Four methods were found to be generally good.
Suggestions are given for choosing the best method for a particular
application.
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PATTERN RECOGNITION WITH PARTLY MISSING DATA

I. INTROD U CTION

When computer pattern recognition methods are tested in the
Laboratory, care is usually taken to see that the exper imental
data sets used are complete and free from error. However, when
pattern recognition is applied to practical problems we often
find that real world data contains many missing val ues. When
a human pattern recognizer is faced with imperfect data he does the
best he can using the data that is av ailable. This kind of human
f lexibil i ty is so natural that we expect it and think little of it.

A program which demands perfect data is not wel l matched to human
information systems where some degree of error is acceptable. But a
program which can accept imperfect data, while still performing
reasonably well, fits in muc h better and is more economically useful.

Data may contain missing value s for a number of reasons. A person
fi l l ing out a questionnaire may neglect or refuse to answer certain
questions. An intercepted radar pulse may be so weak and noisy that
some of the more subtle features are not measurable. The method
of collecting data may change during the course of an
investigation so that a feature is measured in some cases but
not in others. Several similar but not identical data sets from
different sources may be combined. Malfunctioning equipment may
collect some features of an even t but not others. A human operator
may collect detailed information when he has time , but only the most
essential features when he is busy.

The problem then is this:

We have a set of M objects. We wish to identify or classify
these objects by means of a series of N measurements
perfo rmed on each object. Each set of N measurements forms a
vector. The complete set of vectors forms an M X N matrix. But
some of the measurement numbers may be missing. They are replaced by
symbols which indicate blanks. We wish to classify the vectors

Manuicii pt submitted Jul y 6, 1978.
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containing blanks in such a way that we get the same classification
results , as nearly as possible , as would be obtained with the
complete data.

The experimental design is to take several sets of data and apply
a form of nearest neighbor pattern recognition (2, 1~, 151. Then
blanks are inserted at random into the data , and pattern recognition
is done again by several different experimental methods. By
comparing the recognition scores, we can see how well the various
methods work.

The methods for handling blanks used in this paper are
applicable to many other techniques of pattern recognition and
clustering. Some methods first correct the data by filling in
blanks with estimated values. These methods could be used as a
first step with any form of pattern recognition or clustering.
Other methods involve estimating the distance between two vectors
which contain blanks. These methods could be used with any
form of pattern recognition or clustering which is based on
computing the distance between two vectors.

In this paper we shall concentrate on methods which are simple,
cheap, easy to implement, and do not depend on special
properties of the data.

By using special properties of the data, we would expect to get
better results in some cases. For example , it might be that some
missing value is a function of other values. Thus, it would be
possible to recompute the missing value exactly. We do not consider
such methods here because they depend on the particular properties of
the data base and may thus be of less general interest. Moreover , a
simple method may be more economical if its performance is adequate.

The problem we attack here is not the same as that of finding
errors in data, a problem which Lee (9) and Hammer (6) have
considered. The problem of missing data has been previously
considered by Lee, S].agle, and Mong (9). In fact a modification of
Lee’s method is one of those used in this study. However, the
experimental procedure of Lee is different. He used only one
method (a good method by our results) to estimate missing data and
then compared the estimated value with the original value to
see what percentage of error there was in the estimate.

One should also note the work of Skinner (121 on a
generalized method of answering questions and estimating missing
values in a data set. The philosophy of Skinner’s method is
similar to that of Lee, et al . The major difference is that
Skinner deals with non-numerical data.

2
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Sebestyen [11] (p.71) gives a theoretical analysis of pattern
classification wi th  partly missing data.  Sebestyen assumes that the
conditional probabil i ty of class membership given any set or partial
set of measurements is known . Whereas, we assume only that the
probabilities of class membership are defined by a collection
of data which contains many missing values. In general , one
might say that  Sebestyen gives a theoretical analysis of the
missing data problem based on some idealistic assumptions. We , on
the other hand , give an experimental study based on more realistic
assumptions.

Nevertheless , Sebestye n ’s theoretical analysis is of some
interest . Because of the different  assumpt ions , the decision rules
considered by Sebestyen do not correspond in any clear way to the
methods used here. The final conclusion of Sebestyen is that one
should use only the measured values; no useful purpose is
served by attempting to estimate the missing values. Th is
conclusion can be applied to the present study only by analogy.

II. HUMAN INTUITION

Humans are still the best problem solvers in a great many
areas, therefore it makes sense to apply human intuition to
the blank data problem to gain insight. Let us perform the following
gedanken experiment. Consider the following two 5—dimensional
vectors, A and B:

A = (1.2 3.7 10.9 6.3 5.9)
B (1.1 3.5 Blan k 6.2 5.7)

What does intuition suggest about the blank value? One tends to
feel that the blank value is close to 109 since all the other
values are close. More precisely, one might estimate that the blank
is a little smaller than 10.9 since all the other B components are
a little smaller than the corresponding A components. Of course,
our intuition would also depend on other vectors in the data set
which are not shown here.

There are several ways to interpret this intuitive feeling:

1. An assumption that the data are clustered.
2. An assumption that the various features are

correlated so that one can do linear interpolation
across rows (columns).

3. An assumption that if distances are small along
each of 14 dimensions, they will also be small
along the 5th.

3
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III. SIX METHODS OF HA NDLING BLANKS

There are man y methods of handling blanks that  seem
intuitively reasonable. In this study we will compare six methods.
These methods either eliminate blanks by deleting part of the data,
or fill in the blanks with estimated values, or compute an
estimated distance between vectors which contain blanks.

We will use the following notation:

V is a vector with N components or features, X
i i,j

V (X , X , X , . . . ,X )
i i , 1 i ,2 i ,3 i ,N

DAB is the component of distance between vectors A & B
j

along the j th feature:

DAB = X  —x
j a,j b,j

We assume that the entire data set includes M vectrirs , and that
it has been norm al ized so that each feature or colu& “ the data
matrix has zero mean and un it standard deviation.

The six methods used in this stud y are described below:

1. LEE14

This is a modification of the method suggested by Lee, Slagle,
and Mong (9] .  If a vector A has a blank in the jth feature find the
four nearest neighbors of A , then averag e the j th feature of the
fo ur nearest neighbors , and fill in the blank with this value . Lee
assumes that blanks occur only in the one vector being filled in.
If we assume that the data base contains many blanks, then we must
have a way of comput ing distance between vectors containing
arbitrary blanks . In this work we hav e used the method described for
NORMAL below. Also, this program follows the rule that if a vector
has a blank in the jth position, it is discarded. Thus the four
nearest neighbors found will not hav e blanks in the jth feature.
Since LEE14 and NORMAL use the same method of finding nearest
neighbors, they are closely related. However, because things are
done in a different order, they do not, in general, get the same
answers . Also Lee requires that the four nearest neighbors be
members of the same cluster. We do not hav e such a

_ _ _ _ _ _ _  — - —— 
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requ irement , although in most oases they probably will be the
same vectors as selected by the Lee method .

2. LEE 1

This is the same as the LEE~4 method described above except
that  only one nearest neighbor is used instead of four. White [15]
finds that a small K gives better results when the data base is
small. K is the number of nearest neighbors used.

3. DELETE

This program simply deletes vectors or features which contain
blanks. In order to minimize the waste of good data, the
following heuristic procedure is used: The percentage of blanks
in every row and every column is computed . Then the row or
column with the highest percentage of blanks is deleted. Next,
the percentages are recomputed and another row or column is
deleted . The process is repeated unt i l  all blanks are eliminated .
This method has the advantage that it produces perfect data
without making any assumptions. The obvious disadvantage is that a
lot of good data is wasted . Intui t ively ,  this seems a very poor
method , yet in the real world of practical computer programs ,
some form of deletion is often used to deal with blanks ; see Andrews
(1).

~f. NORMAL

This program computes the distance between two vec tors and then
normalizes to compensate for blanks . For example , suppose we have
two vectors A and B. Suppose NB is the number of features which
are blank (in one vector or the other or both) , th en the
distance between vectors is computed as follows:

Oif X or X is blank
DAB a ,j  b , j

.1
(X —x ) otherwise
a,j b,j

N N 2
DISTANCE = — ~~~(DA B )

ab N—NB j:1 j

The result is the square of Euclidean distance if there are no
blanks.
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Another way to express the action of this program is that it

assumes the distance to a blank feature is the same as the average

distance between non—blank features of the same pair of vectors.

This method seem s intuitively reasonable in l ight of the gedanken

experimen t in Section II.

5. AVE R AGE

This program assumes that the distance to a blank is the same as

the average distance between all pairs of vectors along that one

feature:

2 M i— i
~~ ~~~~ X —x

j M(M— 1 ) i~2 k:1 i , j  k , j

All the A’ are computed and sav ed in a table. Then as

com putat ion proceed s, whenever it Is necessary to compute the

distance to a blank , the A’ value is selected from the

table. In other words, the ~istance from V to V is:a b

A’ if X or X is blank
DAB j  a ,j  b , j

j
(I -X ) otherwise
a,j b,j

N 2
DISTANCE = ( (DAB

ab j = 1 j

6. ZERO

This program assumes that the distance to any blank is zero:

[ 0 i f X  o r X
DAB = a , j  b , j

j 
~I (I -x ) otherwise

a,j b,j

N 2
DISTANCE :~~~ (DA B )

ab j:1 ~

6
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Th is is the sane as the NORMAL program except that
normalization is not done. This means that a vector with a great
many blanks will seem to be very close to other vectors.

IV. DATA SETS

While a theoretical analysis of these various methods might be
useful , it would be very difficult to decide what assumptions to make
about the statistical properties of the data. Therefore, we have
chosen an experimental approach.

Five data sets were selected . All of these data sets are free
of blanks except one , which contains a smal l number. Blanks
were inserted into the data sets at locat ions selected by a
random number generator.

1. IRIS

Th is data consists of the first 20 vectors of each class from the
famous iris data first used by Fisher (5) .  M = 60 , N = ~ there are 3
classes , of 20 vectors each.

2. B22

This data consists of features measured on some radar signals.
M 335 , N = 143• There are 114 classes. This data set contains
2.78 % “natural” blanks.

3. VOICE

This data consists of human speech in the form of linear
prediction coefficients. Each vector is a set of 10
coefficients. These vectors were generated from human speech
at a sampl ing rate of 1414 vectors per second . Each vector has been
assigned to a phoneme class (or silence) by human inspection of the
LFC output along with knowledge of what was said. M 100, N 10
and there are 1 14 classes.

14. CAR

This is an artificial data set constructed by evaluation of an
algebraic expression in six variables:

2 2 2  2 2 2
Y : X — 2 X X X +  X X + X — 2 X X X  + X X

1 1 2 3  2 3 14 1 4 5 6  5 6

Arguments for the expression were constructed by a rand om
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number generator. Then the algebraic expression was evalua t ed for
each vec tor and each vector was assigned to a class depending on the
value of Y. The range of Y was partitioned into 5 intervals.
The bound r ies of t he ~ intervals were selected by hand so as to
make 5 classes of approximately equal size. M= 150, N 6.

5. WPS

Th is dat a set is taken from the forms used by judges to evaluate
scientific papers submitted to the World Population Society (an
interdisciplinary scientific society). The judges are asked to
evaluate each paper on a scale of one to five in five different
areas. The areas are: new results, scientific value , relevan ce
to the populat ion field , interdisciplinary cha racter , and an
overall rating. Overall rating was used as the class, thus there are
5 classes. M = 145 , N = 5. The serial number of each paper is also
part of the data in order to see if earl yness or lateness ha d an y
effect on the quality of the paper.

V. EXPERIMENTAL METHOD

Var ious numbers of blanks ( usually 20% or 30%) were inserted
into the data sets. Then a jackknife test was performed on each
data set by each of the six programs.

The jackknife test is a way of divid ing the data set into a
learning set and an experimental set. One vector V is selected from
the data set. The program pretends that  the class of V is unknown
and attempts to classify it using the remaining M—1 vectors. This
procedure is repeated until every vector in the data set has played
the role of unknown. Since the correct classes are known , the
program can score itself by computing the percentage of
correct classifications.

In the case of the DELETE program , the vectors which are deleted
are not counted in scoring. For example if the data set has 100
vectors , and 140 are deleted , and 30 of the remaining 60 are
correctly classified , the score is 50%.

The classification procedure is a distance—weighted K—nearest
neighbor method with K = 14~ If the K-nearest neighbors of some
vector V , are all of the same class , C , then V Is assumed to
belong to class C . However , if the neighbors are of di f ferent
classes then a voting procedure is used . Each neighbor votes for
its class with a weight inversely proportional to its distance from
V .

The decision rule used here is very similar to the one described
by Dudani [14]. The only difference is that a d i f ferent

8
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weighting function is used . Dudani showed that the distance—
weighted K—nearest  neighbor decision rule Is superior to majority
rating.

VI. EXPERIMENTAL RESULTS

Some experimental results are given in Table 1. These are
recognition scores expressed as percentages. The first column ,
labeled “pure” is the score obtained when there are no blanks in the
data ( except the B22 data set , which has 2.8% “natural” blanks). The
second column , labeled “chance” , is the expected score one would
obtain if a random choice of the nearest neighbor (k = 1)  was made
for each attempt at classification. This score is computed from
the number of classes and the number of vectors in each class , by
the formula given below.

K N ( N —1 )
P =  

~~ ~. ~.
i: 1

M(M-1)

Where:
P = probability of correct classification by chance
K = number of dist inct classes
N = number of elements in class I
M = number of elements in the entire data set

This Is the score one would expect if the data were 100% blank.
The other six columns In table 1 correspond to the six different
programs.

Each row corresponds to a different data set. Each data set has
been used four times with different blanks Inserted . In some cases
the percentage of blanks was changed ; in some cases the locations of
the blanks were changed by changing the parameters of the random
number generator. Of course the percentage of blanks information
does not apply to the PURE column or the CHANC E column .

As one can see , the scores for the various programs are usually
smaller than the PURE score but larger than the CHANCE score.

The average scores for the six different programs are given
below. These scores are normalized with respect to the PURE score,
that is, they give the average drop in percentage points due to
the effects of blanks.

9
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METHOD SCORE
AVERAGE —9.70
NORMAL —10.31
LEE1 — 11.53
LEE14 —12.53
ZERO —1 14.68
DELETE — 17.114

The AVERAGE program seems to be best and the DELETE program
seems to be worst . The statistical significance of the difference
between AVERAGE and LEE 14 is P:.01; that is , the probability of the
observed difference being due to chance alone is less than 1%.
The significance of the difference between LEE1 and DELETE is
P=. 1 • The other differences have even less statistical
significance.

These P numbers were computed by WILCOXON’S SIGNED RANKS TEST.
[8]. ThIs test involves ranking the differences between methods
and then computing chance probabilities based on the rank numbers .
Since the raw scores are not used it does not matter  what sort of
statistical distribution the raw scores have. Thus WILCOXON’S SIGNED
RANKS TEST is a distribution— free test of statistical significance.

Many commonly used tests of statistical significance assume a
normal distribut ion. When physical measurements are involved it is
often reasonable to assume a norma). distribut ion , but in
computer work highl y exotic distribut ions are often found
therefore it is important to use a distribut ion-free test.

It is d i f f icu l t  to compare the DELETE method with the others
because only the DELETE method discards data. The table below
gives the size of the voice data set after  the DELETE program has
deleted all blanks.

PERCENT BLANKS M N
0% 100 1 1

20% 29 7
30% 19 6
30% 12 7
140% 13 5

It might be said that our scoring method is excessively kind to
the DELETE program . Perhaps the deleted vectors should properly be
counted “wrong” rather than not counting them at all. If this were
done , the scores of the DELETE method would be abysmally low
com pared to the others . The “correct” way of scoring deleted

10
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vectors depends on the economics of a particular application. One
must consider the cost of permit t ing the luxury  of a “don ’t know”
class.

In order to obta in better stat ist ical sign if icance , It was
decided to make large scale tests. The results are shown In
Table II. Since the DELETE program was already known to be worse
than the others , it was not included . Three of the smaller data
sets , IR IS , VOICE , and WPS were selected for large scale tests , to
conserve computer time. One hund red trials of each data set were
made with each of the 5 programs — 1500 jackknife tests
altogether. The P figures given in Table II were computed by
WILCOXON’S SIGNED RANKS TEST [8] as before.

Table II shows that the ranking of methods depends on the data
set. For ex ampl e , on the IRIS data LEE 14 is significantly
better (P = .0008) than LEE 1. While on WPS data the reverse is true
(P = .00001)

The ZERO method is cons istently poor , but the other met hods
are generally good. When all 300 trials are combined we find
that  NORMAL appears to be best and the others , in order , are
AVERAGE , LEE 1 , LEE14 , ZERO. However, this final ranking must be
int erpret ed caut iously because some of the dist inct ions lack
statistical significance, and al so because the relat ive
effectiveness of’ the var ious methods depends on the data set.

vii. CONCLUSIONS

1. It is possible to obtain good performance of a pattern
recognition system even when the data contains a large percentage
of blanks. With 30% blanks inserted into the data , recogn it ion
scores will typically drop by 5% to 15%. Exact results depend on
the characteristics of the data and on the method used .

2. The DELETE method is very poor and probably should not be
used except in an application where there are very few blanks and
convenience of implementation outweighs the loss of information.

3. The ZERO method is consistently poor and probab ly shoul d
not be used.

l4~ NORMAL , AVERAGE , LEE 1 , and LEE14 are all good methods and one
of these might be chosen for a particular application , the
choice depending on characteristics of the data , ease of
implementat ion , and other factors.

5. NORMAL and AVERAGE seem to be a little more
consistent In performance than LEE1 and LEE14.
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6. Because of its consistent performance, ease of
implementation and fast running speed we would select NORMAL as the
best over all method . However , the other methods might be better
in particular applications. -
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TABLE 1 SCORES OF VARIOUS PROGRAMS

PURE CHANCE LEE14 LEE1 DELETE NORMAL AVERAGE ZERO DATA SET
1. 95.0 32.2 91.7 86.7 87.5 93.3 93.3 88.3 iris,20%
2. 95.0 32.2 90.0 83.3 87.5 86.7 90.0 75.0 iris,30%
3. 95.0 32.2 83.3 80.0 62.5 83.3 86.7 58.3 iris,140%
14. 95.0 32.2 143.3 56.7 100.0 63.3 58.3 33.3 iris,70%
5. 86.3 13,3 85.0 86.0 85.1 86.3 85.7 86.3 b22,2.8%
6. 86.3 13.3 86.6 814.2 72.4 82.4 81.2 83.0 b22,20%
7. 86.3 13.3 84.2 83.0 31.6 79.1 79.4 79.4 b22 ,30%
8. 86.3 13.3 80.9 77.9 58.3 78.2 77.6 77.3 b22,40%
9. 614.0 10.5 54.0 62.0 1414.8 52.0 57.0 55.0 voice,20%
10. 614.0 10.5 148.0 42.0 36.9 45.0 52.0 143.0 voice ,30%
11 . 64.0 10.5 50.0 142.0 8.3 45.0 53.0 44.0 voice,30%
12. 614.0 10 .5 39.0 32.0 23.1 53.0 50.0 514.0 voice ,40%
13. 62.0 33.4 50.0 45.3 58.3 44.7 48.7 148.7 car ,20%
14 . 62.0 33.14 51.3 59.3 56.9 514.0 57.3 52.0 car,20%
15. 62,0 33.14 146.7 52.0 37.5 48.0 53.3 50.7 car,30%
16. 62.0 33.14 38.7 42.7 66.7 145.3 142.7 47.3 car,140%
17. 59.3 27.7 142.8 148.3 55.3 40.0 148.3 39.3 wps,20%
18. 59.3 27.7 54.5 57.9 143,5 62.1 57.9 59.3 wps,20%
19. 59.3 27.7 145.5 59.3 52.5 61.4 48.3 58.6 wps,30%
20. 59.3 27.7 50.3 55.2 55.0 57.2 51.7 140.0 wps,140%
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TABLE II LARGE SCALE TESTS

IRIS DATA
100 Trials — 30% Blanks
METHOD SCORE P

LEEU —5.80 .40796
AVERAGE —6.02 .38139
NORMAL —6.07 .00147
LEE 1 —8 .37 .0000 1
ZERO —22.30

WPS DATA
100 Trials — 30% Blanks
METHOD SCORE P

NORMAL —3.47 .65238
LEE 1 —4 .36 .00017
AVERAGE —6.38 .10277
ZERO —7.73 .01368
LEE 14 — 11.12

VOICE DATA
100 trials — 30% blanks
METHOD SCOR E P

AVERAGE —15.54 .914395
LEE4 —15.87 .01040
NORMAL — 18. 19 .00113
LEE 1 —19. 88 .00918
ZERO —21.33

IRIS + VOICE + WPS
300 trials — 30% blanks
METHODS SCOR E P

NORMAL —9 .24 .27607
AVERAGE —9.31 .34628
LEE 1 —10. 87 .00006
LEE4 -10.93 .00895
ZERO -.17.145
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